Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38477830

RESUMO

Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that intercellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.


Assuntos
Caderinas , Glioma , Criança , Humanos , Astrócitos , Axônios , Caderinas/metabolismo , Movimento Celular , Glioma/metabolismo , Glioma/patologia , Microambiente Tumoral
2.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260559

RESUMO

Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that inter-cellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.

3.
Elife ; 122023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37489578

RESUMO

Integrin-mediated cell attachment rapidly induces tyrosine kinase signaling. Despite years of research, the role of this signaling in integrin activation and focal adhesion assembly is unclear. We provide evidence that the Src-family kinase (SFK) substrate Cas (Crk-associated substrate, p130Cas, BCAR1) is phosphorylated and associated with its Crk/CrkL effectors in clusters that are precursors of focal adhesions. The initial phospho-Cas clusters contain integrin ß1 in its inactive, bent closed, conformation. Later, phospho-Cas and total Cas levels decrease as integrin ß1 is activated and core focal adhesion proteins including vinculin, talin, kindlin, and paxillin are recruited. Cas is required for cell spreading and focal adhesion assembly in epithelial and fibroblast cells on collagen and fibronectin. Cas cluster formation requires Cas, Crk/CrkL, SFKs, and Rac1 but not vinculin. Rac1 provides positive feedback onto Cas through reactive oxygen, opposed by negative feedback from the ubiquitin proteasome system. The results suggest a two-step model for focal adhesion assembly in which clusters of phospho-Cas, effectors and inactive integrin ß1 grow through positive feedback prior to integrin activation and recruitment of core focal adhesion proteins.


Assuntos
Adesões Focais , Fosfoproteínas , Fosforilação , Adesões Focais/metabolismo , Fosfoproteínas/metabolismo , Integrina beta1/metabolismo , Proteína Substrato Associada a Crk/metabolismo , Proteínas Tirosina Quinases/metabolismo , Integrinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/metabolismo
4.
Elife ; 102021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34169835

RESUMO

Integrin adhesion complexes regulate cytoskeletal dynamics during cell migration. Adhesion activates phosphorylation of integrin-associated signaling proteins, including Cas (p130Cas, BCAR1), by Src-family kinases. Cas regulates leading-edge protrusion and migration in cooperation with its binding partner, BCAR3. However, it has been unclear how Cas and BCAR3 cooperate. Here, using normal epithelial cells, we find that BCAR3 localization to integrin adhesions requires Cas. In return, Cas phosphorylation, as well as lamellipodia dynamics and cell migration, requires BCAR3. These functions require the BCAR3 SH2 domain and a specific phosphorylation site, Tyr 117, that is also required for BCAR3 downregulation by the ubiquitin-proteasome system. These findings place BCAR3 in a co-regulatory positive-feedback circuit with Cas, with BCAR3 requiring Cas for localization and Cas requiring BCAR3 for activation and downstream signaling. The use of a single phosphorylation site in BCAR3 for activation and degradation ensures reliable negative feedback by the ubiquitin-proteasome system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína Substrato Associada a Crk/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Pseudópodes/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adesão Celular , Linhagem Celular , Proteína Substrato Associada a Crk/metabolismo , Células Epiteliais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Integrinas/metabolismo , Fosforilação , Domínios de Homologia de src
5.
Mol Cell Biol ; 40(14)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32341084

RESUMO

Several events during the normal development of the mammalian neocortex depend on N-cadherin, including the radial migration of immature projection neurons into the cortical plate. Remarkably, radial migration requires the N-cadherin extracellular domain but not N-cadherin-dependent homophilic cell-cell adhesion, suggesting that other N-cadherin-binding proteins may be involved. We used proximity ligation and affinity purification proteomics to identify N-cadherin-binding proteins. Both screens detected MycBP2 and SPRY domain protein Fbxo45, two components of an intracellular E3 ubiquitin ligase. Fbxo45 appears to be secreted by a nonclassical mechanism, not involving a signal peptide and not requiring transport from the endoplasmic reticulum to the Golgi apparatus. Fbxo45 binding requires N-cadherin SPRY motifs that are not involved in cell-cell adhesion. SPRY mutant N-cadherin does not support radial migration in vivo Radial migration was similarly inhibited when Fbxo45 expression was suppressed. The results suggest that projection neuron migration requires both Fbxo45 and the binding of Fbxo45 or another protein to SPRY motifs in the extracellular domain of N-cadherin.


Assuntos
Encéfalo/embriologia , Caderinas/metabolismo , Proteínas F-Box/metabolismo , Neurônios/citologia , Animais , Domínio B30.2-SPRY , Encéfalo/citologia , Encéfalo/metabolismo , Caderinas/análise , Movimento Celular , Proteínas F-Box/análise , Feminino , Células HEK293 , Células HeLa , Humanos , Camundongos , Neurônios/metabolismo , Ligação Proteica
6.
Elife ; 82019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31577229

RESUMO

The functions of FGF receptors (FGFRs) in early development of the cerebral cortex are well established. Their functions in the migration of neocortical projection neurons, however, are unclear. We have found that FGFRs regulate multipolar neuron orientation and the morphological change into bipolar cells necessary to enter the cortical plate. Mechanistically, our results suggest that FGFRs are activated by N-Cadherin. N-Cadherin cell-autonomously binds FGFRs and inhibits FGFR K27- and K29-linked polyubiquitination and lysosomal degradation. Accordingly, FGFRs accumulate and stimulate prolonged Erk1/2 phosphorylation. Neurons inhibited for Erk1/2 are stalled in the multipolar zone. Moreover, Reelin, a secreted protein regulating neuronal positioning, prevents FGFR degradation through N-Cadherin, causing Erk1/2 phosphorylation. These findings reveal novel functions for FGFRs in cortical projection neuron migration, suggest a physiological role for FGFR and N-Cadherin interaction in vivo and identify Reelin as an extracellular upstream regulator and Erk1/2 as downstream effectors of FGFRs during neuron migration.


Assuntos
Caderinas/metabolismo , Neocórtex/embriologia , Neurogênese , Neurônios/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Ubiquitinação , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteína Reelina , Serina Endopeptidases/metabolismo
7.
Dev Dyn ; 247(11): 1227-1236, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30269386

RESUMO

BACKGROUND: The E3 Cullin 5-RING ubiquitin ligase (CRL5) is a multiprotein complex that has recently been highlighted as a major regulator of central nervous system development. Cullin 5 (Cul5) and the RING finger protein Rbx2 are two CRL5 core components required for CRL5 function in the brain, but their full expression patterns and developmental functions have not been described in detail. RESULTS: Using a gene-trap mouse model for Cul5 and a knock-in-knockout mouse model for Rbx2, we show that lack of Cul5, but not Rbx2, disrupts blastocyst formation. However, Rbx2 is required for embryo survival at later embryonic stages. We also show that cul5 is expressed in the embryo proper as early as E7.5 and its expression is mostly restricted to the central nervous system and limbs at later time points. Finally, we show that rbx2 and cul5 are co-expressed in most areas of the brain during development and in the adult. CONCLUSIONS: Our results show that Cul5, but not Rbx2, is required during early embryogenesis and suggests that Cul5 has Rbx2-independent functions in early development. In the brain, Cul5 and Rbx2 are expressed in a similar fashion, allowing the nucleation of an active CRL5 complex. Developmental Dynamics 247:1227-1236, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Química Encefálica , Proteínas Culina/biossíntese , Desenvolvimento Embrionário , Ubiquitina-Proteína Ligases/análise , Animais , Embrião de Mamíferos/metabolismo , Camundongos , Fatores de Tempo , Ubiquitina-Proteína Ligases/biossíntese
8.
Am J Hum Genet ; 102(6): 1143-1157, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29805042

RESUMO

Non-syndromic cleft lip with or without cleft palate (NS-CL/P) is one of the most common human birth defects and is generally considered a complex trait. Despite numerous loci identified by genome-wide association studies, the effect sizes of common variants are relatively small, with much of the presumed genetic contribution remaining elusive. We report exome-sequencing results in 209 people from 72 multi-affected families with pedigree structures consistent with autosomal-dominant inheritance and variable penetrance. Herein, pathogenic variants are described in four genes encoding components of the p120-catenin complex (CTNND1, PLEKHA7, PLEKHA5) and an epithelial splicing regulator (ESRP2), in addition to the known CL/P-associated gene, CDH1, which encodes E-cadherin. The findings were also validated in a second cohort of 497 people with NS-CL/P, comprising small families and singletons with pathogenic variants in these genes identified in 14% of multi-affected families and 2% of the replication cohort of smaller families. Enriched expression of each gene/protein in human and mouse embryonic oro-palatal epithelia, demonstration of functional impact of CTNND1 and ESRP2 variants, and recapitulation of the CL/P spectrum in Ctnnd1 knockout mice support a causative role in CL/P pathogenesis. These data show that primary defects in regulators of epithelial cell adhesion are the most significant contributors to NS-CL/P identified to date and that inherited and de novo single gene variants explain a substantial proportion of NS-CL/P.


Assuntos
Caderinas/genética , Cateninas/genética , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Mutação/genética , Alelos , Sequência de Aminoácidos , Animais , Biotinilação , Epitélio/metabolismo , Epitélio/patologia , Feminino , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Palato/patologia , Linhagem , Síndrome , Sequenciamento do Exoma , delta Catenina
9.
Neoplasia ; 20(3): 233-243, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29444487

RESUMO

Cross talk of stromal-epithelial cells plays an essential role in both normal development and tumor initiation and progression. Fibroblast growth factor (FGF)-FGF receptor (FGFR)-Src kinase axis is one of the major signal transduction pathways to mediate this cross talk. Numerous genomic studies have demonstrated that expression levels of FGFR/Src are deregulated in a variety of cancers including prostate cancer; however, the role that paracrine FGF (from stromal cells) plays in dysregulated expression of epithelial FGFRs/Src and tumor progression in vivo is not well evaluated. In this study, we demonstrate that ectopic expression of wild-type FGFR1/2 or Src kinase in epithelial cells was not sufficient to initiate prostate tumorigenesis under a normal stromal microenvironment in vivo. However, paracrine FGF10 synergized with ectopic expression of epithelial FGFR1 or FGFR2 to induce epithelial-mesenchymal transition. Additionally, paracrine FGF10 sensitized FGFR2-transformed epithelial cells to initiate prostate tumorigenesis. Next, paracrine FGF10 also synergized with overexpression of epithelial Src kinase to high-grade tumors. But loss of the myristoylation site in Src kinase inhibited paracrine FGF10-induced prostate tumorigenesis. Loss of myristoylation alters Src levels in the cell membrane and inhibited FGF-mediated signaling including inhibition of the phosphotyrosine pattern and FAK phosphorylation. Our study demonstrates the potential tumor progression by simultaneous deregulation of proteins in the FGF/FGFRs/Src signal axis and provides a therapeutic strategy of targeting myristoylation of Src kinase to interfere with the tumorigenic process.


Assuntos
Transformação Celular Neoplásica/patologia , Fatores de Crescimento de Fibroblastos/genética , Genes src/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Oncogenes/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular , Transformação Celular Neoplásica/genética , Progressão da Doença , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/genética , Células Estromais/metabolismo , Células Estromais/patologia
10.
Sci Rep ; 7(1): 10838, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883622

RESUMO

Suppressors of cytokine signaling (SOCS) proteins inhibit signaling by serving as substrate receptors for the Cullin5-RING E3 ubiquitin ligase (CRL5) and through a variety of CRL5-independent mechanisms. CRL5, SOCS2 and SOCS6 are implicated in suppressing transformation of epithelial cells. We identified cell proteins that interact with SOCS2 and SOCS6 using two parallel proteomics techniques: BioID and Flag affinity purification mass spectrometry. The receptor tyrosine kinase ephrin type-A receptor 2 (EphA2) was identified as a SOCS2-interacting protein. SOCS2-EphA2 binding requires the SOCS2 SH2 domain and EphA2 activation loop autophosphorylation, which is stimulated by Ephrin A1 (EfnA1) or by phosphotyrosine phosphatase inhibition. Surprisingly, EfnA1-stimulated EphA2-SOCS2 binding is delayed until EphA2 has been internalized into endosomes. This suggests that SOCS2 binds to EphA2 in the context of endosomal membranes. We also found that SOCS2 overexpression decreases steady state levels of EphA2, consistent with increased EphA2 degradation. This effect is indirect: SOCS2 induces EfnA1 expression, and EfnA1 induces EphA2 down-regulation. Other RTKs have been reported to bind, and be regulated by, over-expressed SOCS proteins. Our data suggest that SOCS protein over-expression may regulate receptor tyrosine kinases through indirect and direct mechanisms.


Assuntos
Efrina-A2/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Biomarcadores , Linhagem Celular , Efrina-A2/genética , Expressão Gênica , Humanos , Camundongos , Mutação , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteoma , Proteômica/métodos , Receptor EphA2 , Proteínas Supressoras da Sinalização de Citocina/química , Proteínas Supressoras da Sinalização de Citocina/genética
11.
Dev Cell ; 41(5): 481-495.e5, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28552558

RESUMO

Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1fl/fl), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells.


Assuntos
Encéfalo/anormalidades , Adesão Celular/fisiologia , Polaridade Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Proteínas de Homeodomínio/fisiologia , Células-Tronco Neurais/fisiologia , Heterotopia Nodular Periventricular/patologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Apoptose , Encéfalo/metabolismo , Encéfalo/patologia , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células , Células Cultivadas , Proteínas do Citoesqueleto , Células-Tronco Embrionárias/citologia , Feminino , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Células-Tronco Neurais/citologia , Heterotopia Nodular Periventricular/metabolismo , Fosforilação
12.
Sci Rep ; 7: 43760, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272509

RESUMO

The Reelin-Dab1 signaling pathway regulates development of the mammalian brain, including neuron migrations in various brain regions, as well as learning and memory in adults. Extracellular Reelin binds to cell surface receptors and activates phosphorylation of the intracellular Dab1 protein. Dab1 is required for most effects of Reelin, but Dab1-independent pathways may contribute. Here we developed a single-component, photoactivatable Dab1 (opto-Dab1) by using the blue light-sensitive dimerization/oligomerization property of A. thaliana Cryptochrome 2 (Cry2). Opto-Dab1 can activate downstream signals rapidly, locally, and reversibly upon blue light illumination. The high spatiotemporal resolution of the opto-Dab1 probe also allows us to control membrane protrusion, retraction and ruffling by local illumination in both COS7 cells and in primary neurons. This shows that Dab1 activation is sufficient to orient cell movement in the absence of other signals. Opto-Dab1 may be useful to study the biological functions of the Reelin-Dab1 signaling pathway both in vitro and in vivo.


Assuntos
Luz , Proteínas do Tecido Nervoso/metabolismo , Optogenética/métodos , Transdução de Sinais/efeitos da radiação , Animais , Células COS , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Chlorocebus aethiops , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/efeitos da radiação , Fosforilação/efeitos da radiação , Proteína Reelina , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
13.
Elife ; 52016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27656905

RESUMO

Cell migration requires the cyclical assembly and disassembly of focal adhesions. Adhesion induces phosphorylation of focal adhesion proteins, including Cas (Crk-associated substrate/p130Cas/BCAR1). However, Cas phosphorylation stimulates adhesion turnover. This raises the question of how adhesion assembly occurs against opposition from phospho-Cas. Here we show that suppressor of cytokine signaling 6 (SOCS6) and Cullin 5, two components of the CRL5SOCS6 ubiquitin ligase, inhibit Cas-dependent focal adhesion turnover at the front but not rear of migrating epithelial cells. The front focal adhesions contain phospho-Cas which recruits SOCS6. If SOCS6 cannot access focal adhesions, or if cullins or the proteasome are inhibited, adhesion disassembly is stimulated. This suggests that the localized targeting of phospho-Cas within adhesions by CRL5SOCS6 and concurrent cullin and proteasome activity provide a negative feedback loop, ensuring that adhesion assembly predominates over disassembly at the leading edge. By this mechanism, ubiquitination provides a new level of spatio-temporal control over cell migration.


Assuntos
Movimento Celular , Células Epiteliais/fisiologia , Adesões Focais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Linhagem Celular , Proteína Substrato Associada a Crk/metabolismo , Proteínas Culina/metabolismo , Humanos , Proteínas Supressoras da Sinalização de Citocina/metabolismo
14.
J Clin Invest ; 126(4): 1311-22, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26927671

RESUMO

Acute and chronic tissue injury results in the generation of a myriad of environmental cues that macrophages respond to by changing their phenotype and function. This phenotypic regulation is critical for controlling tissue inflammation and resolution. Here, we have identified the adaptor protein disabled homolog 2 (DAB2) as a regulator of phenotypic switching in macrophages. Dab2 expression was upregulated in M2 macrophages and suppressed in M1 macrophages isolated from both mice and humans, and genetic deletion of Dab2 predisposed macrophages to adopt a proinflammatory M1 phenotype. In mice with myeloid cell-specific deletion of Dab2 (Dab2fl/fl Lysm-Cre), treatment with sublethal doses of LPS resulted in increased proinflammatory gene expression and macrophage activation. Moreover, chronic high-fat feeding exacerbated adipose tissue inflammation, M1 polarization of adipose tissue macrophages, and the development of insulin resistance in DAB2-deficient animals compared with controls. Mutational analyses revealed that DAB2 interacts with TNF receptor-associated factor 6 (TRAF6) and attenuates IκB kinase ß-dependent (IKKß-dependent) phosphorylation of Ser536 in the transactivation domain of NF-κB p65. Together, these findings reveal that DAB2 is critical for controlling inflammatory signaling during phenotypic polarization of macrophages and suggest that manipulation of DAB2 expression and function may hold therapeutic potential for the treatment of acute and chronic inflammatory disorders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transporte Vesicular/biossíntese , Tecido Adiposo/metabolismo , Regulação da Expressão Gênica , Macrófagos/metabolismo , Paniculite/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Tecido Adiposo/patologia , Animais , Proteínas Reguladoras de Apoptose , Linhagem Celular , Células HEK293 , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Paniculite/genética , Paniculite/patologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Proteínas Supressoras de Tumor/genética
15.
Mol Cell Biol ; 35(11): 1886-97, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25776560

RESUMO

Three classes of E3 ubiquitin ligases, members of the Cbl, Hakai, and SOCS-Cul5-RING ligase families, stimulate the ubiquitination of phosphotyrosine-containing proteins, including receptor and nonreceptor tyrosine kinases and their phosphorylated substrates. Because ubiquitination frequently routes proteins for degradation by the lysosome or proteasome, these E3 ligases are able to potently inhibit tyrosine kinase signaling. Their loss or mutational inactivation can contribute to cancer, autoimmunity, or endocrine disorders, such as diabetes. However, these ligases also have biological functions that are independent of their ubiquitination activity. Here we review relevant literature and then focus on more-recent developments in understanding the structures, substrates, and pathways through which the phosphotyrosine-specific ubiquitin ligases regulate diverse aspects of cell biology.


Assuntos
Fosfotirosina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Ubiquitinação/fisiologia
16.
Front Cell Neurosci ; 8: 386, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25452716

RESUMO

Most neurons migrate with an elongated, "bipolar" morphology, extending a long leading process that explores the environment. However, when immature projection neurons enter the intermediate zone (IZ) of the neocortex they become "multipolar". Multipolar cells extend and retract cytoplasmic processes in different directions and move erratically-sideways, up and down. Multipolar cells extend axons while they are in the lower half of the IZ. Remarkably, the cells then resume radial migration: they reorient their centrosome and Golgi apparatus towards the pia, transform back to bipolar morphology, and commence locomotion along radial glia (RG) fibers. This reorientation implies the existence of directional signals in the IZ that are ignored during the multipolar stage but sensed after axonogenesis. In vivo genetic manipulation has implicated a variety of candidate directional signals, cell surface receptors, and signaling pathways, that may be involved in polarizing multipolar cells and stabilizing a pia-directed leading process for radial migration. Other signals are implicated in starting multipolar migration and triggering axon outgrowth. Here we review the molecules and mechanisms that regulate multipolar migration, and also discuss how multipolar migration affects the orderly arrangement of neurons in layers and columns in the developing neocortex.

17.
Arterioscler Thromb Vasc Biol ; 34(11): 2404-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25212232

RESUMO

OBJECTIVE: The essential role of platelet activation in hemostasis and thrombotic diseases focuses attention on unveiling the underlying intracellular signals of platelet activation. Disabled-2 (Dab2) has been implicated in platelet aggregation and in the control of clotting responses. However, there is not yet any in vivo study to provide direct evidence for the role of Dab2 in hemostasis and platelet activation. APPROACH AND RESULTS: Megakaryocyte lineage-restricted Dab2 knockout (Dab2(-/-)) mice were generated to delineate in vivo functions of Dab2 in platelets. Dab2(-/-) mice appeared normal in size with prolonged bleeding time and impaired thrombus formation. Although normal in platelet production and granule biogenesis, Dab2(-/-) platelets elicited a selective defect in platelet aggregation and spreading on fibrinogen in response to low concentrations of thrombin, but not other soluble agonists. Investigation of the role of Dab2 in thrombin signaling revealed that Dab2 has no effect on the expression of thrombin receptors and the outside-in signaling. Dab2(-/-) platelets stimulated by low concentrations of thrombin were normal in Gαq-mediated calcium mobilization and protein kinase C activation, but were defective in Gα12/13-mediated RhoA-ROCKII activation. The attenuated Gα12/13 signaling led to impaired ADP release, Akt-mammalian target of rapamycin and integrin αIIbß3 activation, fibrinogen binding, and clot retraction. The defective responses of Dab2(-/-) platelets to low concentrations of thrombin stimulation may contribute to the impaired hemostasis and thrombosis of Dab2(-/-) mice. CONCLUSIONS: This study sheds new insight in platelet biology and represents the first report demonstrating that Dab2 is a key regulator of hemostasis and thrombosis by functional interplay with Gα12/13-mediated thrombin signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ligação a DNA/fisiologia , Hemostasia/fisiologia , Ativação Plaquetária/fisiologia , Transdução de Sinais/fisiologia , Trombina/fisiologia , Trombose/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Difosfato de Adenosina/fisiologia , Animais , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/fisiologia , Proteína Quinase C/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia
18.
J Cell Sci ; 127(Pt 3): 509-20, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24284072

RESUMO

Phosphorylation-dependent protein ubiquitylation and degradation provides an irreversible mechanism to terminate protein kinase signaling. Here, we report that mammary epithelial cells require cullin-5-RING-E3-ubiquitin-ligase complexes (Cul5-CRLs) to prevent transformation by a Src-Cas signaling pathway. Removal of Cul5 stimulates growth-factor-independent growth and migration, membrane dynamics and colony dysmorphogenesis, which are all dependent on the endogenous tyrosine kinase Src. Src is activated in Cul5-deficient cells, but Src activation alone is not sufficient to cause transformation. We found that Cul5 and Src together stimulate degradation of the Src substrate p130Cas (Crk-associated substrate). Phosphorylation stimulates Cas binding to the Cul5-CRL adaptor protein SOCS6 and consequent proteasome-dependent degradation. Cas is necessary for the transformation of Cul5-deficient cells. Either knockdown of SOCS6 or use of a degradation-resistant Cas mutant stimulates membrane ruffling, but not other aspects of transformation. Our results show that endogenous Cul5 suppresses epithelial cell transformation by several pathways, including inhibition of Src-Cas-induced ruffling through SOCS6.


Assuntos
Transformação Celular Neoplásica/genética , Proteína Substrato Associada a Crk/metabolismo , Proteínas Culina/genética , Quinases da Família src/metabolismo , Animais , Movimento Celular/genética , Proliferação de Células , Proteínas Culina/metabolismo , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Transdução de Sinais/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética
19.
Dev Cell ; 27(4): 399-411, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24210661

RESUMO

Morphogenesis requires the proper migration and positioning of different cell types in the embryo. Much more is known about how cells start and guide their migrations than about how they stop when they reach their destinations. Here we provide evidence that Rbx2, a subunit of the Cullin 5-RING E3 ubiquitin ligase (CRL5) complex, stops neocortical projection neurons at their target layers. Rbx2 mutation causes neocortical and cerebellar ectopias dependent on Dab1, a key signaling protein in the Reelin pathway. SOCS7, a CRL5 substrate adaptor protein, is also required for neocortical layering. SOCS7-CRL5 complexes stimulate the ubiquitylation and turnover of Dab1. SOCS7 is upregulated during projection neuron migration, and unscheduled SOCS7 expression stops migration prematurely. Cerebellar development requires Rbx2 but not SOCS7, pointing to the importance of other CRL5 adaptors. Our results suggest that CRL5 adaptor expression is spatiotemporally regulated to modulate Reelin signaling and ensure normal neuron positioning in the developing brain.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Serina Endopeptidases/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosforilação , Proteína Reelina , Serina Endopeptidases/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
20.
Development ; 140(20): 4237-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24026120

RESUMO

High refractive index and transparency of the eye lens require uniformly shaped and precisely aligned lens fiber cells. During lens development, equatorial epithelial cells undergo cell-to-cell alignment to form meridional rows of hexagonal cells. The mechanism that controls this morphogenesis from randomly packed cuboidal epithelial cells to highly organized hexagonal fiber cells remains unknown. In Epha2(-/-) mouse lenses, equatorial epithelial cells fail to form precisely aligned meridional rows; moreover, the lens fulcrum, where the apical tips of elongating epithelial cells constrict to form an anchor point before fiber cell differentiation and elongation at the equator, is disrupted. Phosphorylated Src-Y424 and cortactin-Y466, actin and EphA2 cluster at the vertices of wild-type hexagonal epithelial cells in organized meridional rows. However, phosphorylated Src and phosphorylated cortactin are not detected in disorganized Epha2(-/-) cells with altered F-actin distribution. E-cadherin junctions, which are normally located at the basal-lateral ends of equatorial epithelial cells and are diminished in newly differentiating fiber cells, become widely distributed in the apical, lateral and basal sides of epithelial cells and persist in differentiating fiber cells in Epha2(-/-) lenses. Src(-/-) equatorial epithelial cells also fail to form precisely aligned meridional rows and lens fulcrum. These results indicate that EphA2/Src signaling is essential for the formation of the lens fulcrum. EphA2 also regulates Src/cortactin/F-actin complexes at the vertices of hexagonal equatorial cells for cell-to-cell alignment. This mechanistic information explains how EphA2 mutations lead to disorganized lens cells that subsequently contribute to altered refractive index and cataracts in humans and mice.


Assuntos
Cristalino/embriologia , Cristalino/metabolismo , Receptor EphA2/metabolismo , Quinases da Família src/metabolismo , Animais , Caderinas/metabolismo , Catarata/metabolismo , Diferenciação Celular , Movimento Celular , Cortactina/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Camundongos , Camundongos Knockout , Morfogênese , Fosforilação , Receptor EphA2/genética , Transdução de Sinais , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...